Vivekananda College of Engineering & Technology,Puttur							
[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ${ ilde {f B}}$]							
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi							
CRM08	Rev 1.10	«CSE»	< 31.07.2021>>				

CONTINUOUS INTERNAL EVALUATION- 3

Dept: CSE	Sem / Div:4CS A & B	Sub: Microcontroller &	S Code: 18CS44				
		Embedded Systems					
Date: 05.08.2021	Time:3:00PM - 4:30PM	Max Marks: 50	Elective: N				
Note: Answer any 2 full questions, choosing one full question from each part.							

	Q N	Questions	Marks	RBT	COs		
		PART A					
]	la	What is operational quality attribute? Explain the important operational quality attributes to be considered in any embedded system design	9	L2	CO3		
	b	Explain Sequential Program model and Object-Oriented model	9	L2	CO3		
	c	Explain the Super loop based embedded firmware design approaches in detail	7	L2	CO3		
OR							
4	2 a	What is hardware software co-design? Explain the fundamental issues in hardware software co-design	9	L2	CO3		
	b	Explain the different electronic control units (ECUs) and automotive communication buses used in automotive applications	9	L2	CO3		
	c	Explain the advantages and disadvantages/drawbacks of	7	L2	CO3		
		i) 'Assembly language' based embedded firmware development					
		ii) 'High level language' based embedded firmware development					
PART B							
	3 a	What is kernel? What are different functions handled by kernel for a general-purpose OS?	9	L3	CO4		
	b	What is task control block (TCB)? Explain structure of TCB	9	L2	CO4		
	c	Differentiate b/n Thread and Process	7	L3	CO4		
OR							
2	la	Explain the different techniques available for Embedded firmware debugging	9	L3	CO4		
	b	Explain structure of a process and explain Process Life Cycle with various activities involved in the creation of process (State transition with diagram)	9	L2	CO4		
	c	Explain the remote procedure call (RPC) mechanism for IPC	7	L3	CO4		

_